Planetesimal Formation through Gravitational Instability
نویسندگان
چکیده
Introduction. Two prevailing processes of planetesimal formation are proposed. The first is the gravitational instability of a dust layer (e.g., Safronov 1969, Hayashi 1972, Goldreich and Ward 1973). The second is the growth through the mutual sticking of dust particles in a turbulent nebula (Weidenschilling and Cuzzi 1993, Stepinski and Valageas 1997). We consider the first one in this study. The solar nebula is considered to be turbulent more or less at early stages. After such turbulent motion has decayed, dust particles settle toward the central plane of the nebula (Weidenschilling 1980, Nakagawa et al. 1981, 1986). The linear stability analysis gives the condition for gravitational instability of a self-gravitating disk in terms of Toomre’s Qvalue as
منابع مشابه
Long-Lived Planetesimal Discs
We investigate the survival of planetesimal discs over Gyr timescales, using a unified approach that is applicable to all Keplerian discs of solid bodies – dust grains, asteroids, planets, etc. Planetesimal discs can be characterized locally by four parameters: surface density, semimajor axis, planetesimal size and planetesimal radial velocity dispersion. Any planetesimal disc must have survive...
متن کاملPlanetesimal Formation with Particle Feedback
Proposed mechanisms for the formation of km-sized solid planetesimals face long-standing difficulties. Robust sticking mechanisms that would produce planetesimals by coagulation alone remain elusive. The gravitational collapse of smaller solids into planetesimals is opposed by stirring from turbulent gas. This proceeding describes recent works showing that “particle feedback,” the back-reaction...
متن کاملAccelerated planetesimal growth in self-gravitating protoplanetary discs
In this paper we consider the evolution of small planetesimals (radii ∼ 1− 10 metres) in marginally stable, self-gravitating protoplanetary discs. The drag force between the disc gas and the embedded planetesimals generally causes the planetesimals to drift inwards through the disc at a rate that depends on the particle size. In a marginally stable, self-gravitating disc, however, the planetesi...
متن کاملJumping the Gap: The Formation Conditions and Mass Function of “Pebble-Pile” Planetesimals
In a turbulent proto-planetary disk, dust grains undergo large density fluctuations and under the right circumstances, these grain overdensities can overcome shear, turbulent, and gas pressure support to collapse under self-gravity (forming a “pebble pile” planetesimal). Using a simple analytic model for the fluctuations predicted in simulations, we estimate the rate-of-formation and mass funct...
متن کاملPlanetesimal Formation by Gravitational Instability
We investigate the formation of planetesimals via the gravitational instability of solids that have settled to the midplane of a circumstellar disk. Vertical shear between the gas and a subdisk of solids induces turbulent mixing which inhibits gravitational instability. Working in the limit of small, well-coupled particles, we find that the mixing becomes ineffective when the surface density ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003